El fenómeno fue detectado por dos satélites gemelos de la NASA llamados RBSP (Radiaton Belt Storm Probes) lanzados el 30 de agosto de 2012 para estudiar esos cinturones. Los primeros días solo se observaron dos cinturones, como era de esperar, pero el 2 de septiembre apareció una banda angosta entre los anillos interior y exterior. El 1 de octubre ya no había ni rastro. La extraña aparición dejó estupefactos a los investigadores, incapaces de darle una explicación.
Ahora, científicos espaciales de la Universidad de California en Los Ángeles (UCLA) creen conocer su origen y características. Según explican en la revista Nature Physics, el tercer cinturón está compuesto de unas partículas extremadamente energéticas, que se rigen «por procesos físicos muy diferentes a los de los otros dos anillos», dice Yuri Shprits, geofísico investigador del Departamento de Tierra y Ciencias del Espacio e UCLA y director del estudio.
Muy peligrosos
Estos electrones, llamados ultrarelativistas, serían especialmente peligrosos, ya que pueden atravesar la protección de los satélites más avanzados y valiosos que hemos enviado al espacio. Esto se debe a que se mueven «muy cerca de la velocidad de la luz y la energía de su movimiento es varias veces mayor que la energía contenida en su masa cuando están en reposo», subraya el investigador Adam Kellerman sobre estas partículas.
La región que ocupan los cinturones, que van desde unos 1.000 a 50.000 kilómetros sobre la superficie de la Tierra, está llena de electrones tan energéticos que se mueven cerca de la velocidad de la luz. Shprits y su equipo encontraron que el 1 de septiembre de 2012, las ondas de plasma producidas por iones que normalmente no afectan a electrones energéticos sacaron repentinamente electrones ultrarelativistas casi hasta el borde interior del cinturón exterior. «Sólo un estrecho anillo de electrones ultrarelativistas sobrevivió a la tormenta. Este remanente formó el tercer anillo».
La punta del iceberg
Después de la tormenta, una burbuja de plasma frío se expandió alrededor de la Tierra que protegió a las partículas en ese estrecho anillo de las ondas de iones, permitiendo al anillo persistir. El equipo de Shprits también encontró que las pulsaciones electromagnéticas de muy baja frecuencia que se creían que eran dominantes en la aceleración y la pérdida de electrones del cinturón de radiación no influyeron en los ultrarelativistas.
«Los cinturones de radiación de Van Allen ya no pueden ser considerados como una masa coherente de electrones. Se comportan de acuerdo con sus energías y reaccionan de diversas maneras a las perturbaciones en el espacio», argumenta Shprits. «Creo que, con este estudio, hemos descubierto la punta del iceberg -agrega-. Todavía tenemos que comprender cómo se aceleran los electrones, dónde se originan y cómo cambia la dinámica de los cinturones en diferentes tormentas».
Más información y fuentes:
abc.es
No hay comentarios:
Publicar un comentario